Non-Gaussian Component Analysis with Log-Density Gradient Estimation
نویسندگان
چکیده
Non-Gaussian component analysis (NGCA) is aimed at identifying a linear subspace such that the projected data follows a nonGaussian distribution. In this paper, we propose a novel NGCA algorithm based on logdensity gradient estimation. Unlike existing methods, the proposed NGCA algorithm identifies the linear subspace by using the eigenvalue decomposition without any iterative procedures, and thus is computationally reasonable. Furthermore, through theoretical analysis, we prove that the identified subspace converges to the true subspace at the optimal parametric rate. Finally, the practical performance of the proposed algorithm is demonstrated on both artificial and benchmark datasets.
منابع مشابه
Estimation of Non-Normalized Statistical Models by Score Matching
One often wants to estimate statistical models where the probability density function is known only up to a multiplicative normalization constant. Typically, one then has to resort to Markov Chain Monte Carlo methods, or approximations of the normalization constant. Here, we propose that such models can be estimated by minimizing the expected squared distance between the gradient of the log-den...
متن کاملRegularized Multitask Learning for Multidimensional Log-Density Gradient Estimation
Log-density gradient estimation is a fundamental statistical problem and possesses various practical applications such as clustering and measuring nongaussianity. A naive two-step approach of first estimating the density and then taking its log gradient is unreliable because an accurate density estimate does not necessarily lead to an accurate log-density gradient estimate. To cope with this pr...
متن کاملBlind Signal Separation with Kernel Probability Density Estimation Based on MMI Criterion Optimized by Conjugate Gradient
This paper presents a novel blind signal separation (BSS) approach based on the theory of independent component analysis. In the proposed BSS approach, the learning rule is derived by the conjugate gradient optimization algorithm rather than the ordinary gradient and natural gradient algorithm based on the minimum mutual information (MMI) criterion. The score function is a key point in solving ...
متن کاملEstimation of non-Gaussian Affine Term Structure Models
We develop a new approach to estimate Gaussian and non-Gaussian affine term structure models. We construct an exact concentrated log-likelihood function that reduces the dimension of the parameter space and eliminates parameters that often cause problems for conventional estimation procedures. As a separate contribution, we derive the analytical gradients for the log-likelihood. Our approach ou...
متن کاملBayesian Analysis of Censored Spatial Data Based on a Non-Gaussian Model
Abstract: In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016